

US007102621B2

(12) United States Patent

Roberts

(10) Patent No.: US 7,102,621 B2

(45) **Date of Patent:** *Sep. 5, 2006

(54) FORCE MEASUREMENT SYSTEM CORRECTING FOR INERTIAL INTERFERENCE

(75) Inventor: Jerry B. Roberts, Arlington, MA (US)

(73) Assignee: **3M Innovative Properties Company**, St. Paul, MN (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 478 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: 09/882,338

(22) Filed: Sep. 5, 2001

(65) **Prior Publication Data**

US 2002/0050984 A1 May 2, 2002

Related U.S. Application Data

- (62) Division of application No. 08/589,930, filed on Sep. 3, 1997, now Pat. No. 0,628,538.
- (51) **Int. Cl. G09G 5/00** (2006.01)

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,657,475 A	4/1972	Peronneau et al.
4,327,578 A	5/1982	D'Angelo 73/117
4,389,711 A	6/1983	Hotta et al.
4,745,565 A	5/1988	Garwin et al.
4,918,262 A	4/1990	Flowers et al.
5,038,142 A	8/1991	Flower et al 341/34
5,209,661 A	5/1993	Hildreth et al.
5,294,757 A	3/1994	Skalski et al.
5,376,948 A	12/1994	Roberts 345/173
5,521,596 A	5/1996	Selker et al 341/22
5,541,622 A	7/1996	Engle et al 345/161
5,563,632 A	10/1996	Roberts
6,285,358 B1	9/2001	Roberts 345/173

Primary Examiner—Lun-yi Lao

(74) Attorney, Agent, or Firm-Robert J. Pechman

(57) ABSTRACT

A method and apparatus is disclosed, particularly, though by no means exclusively, useful in touch-screen computer CRT display systems and the like, and more generally in other force and/or torque measurement systems, as in weighing and the like, in which (1) lineal and/or rotational acceleration of the system is sensed in response to inertial interference effects such as tilt or movement that introduce errors into the force and/or torque measurements, and/or (2) inertial error correction from the force data itself is obtained, such as derivative order corrections; and such data is used to correct the force and/or torque measurements. A novel calibration technique for deriving appropriately descriptive coefficients to the particular system for the correcting data, is also disclosed.

7 Claims, 8 Drawing Sheets

